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Anomalous far-infrared monochromatic transmission through a lattice of Abrikosov vortices in a type-II
superconducting film is found and reported. The transmitted frequency corresponds to the photonic mode
localized by the defects of the Abrikosov lattice. These defects are formed by extra vortices placed out of the
nodes of the ideal Abrikosov lattice. The extra vortices can be pinned by crystal lattice defects of a supercon-
ductor. The corresponding frequency is studied as a function of magnetic field and temperature in the frame-
work of the Dirac-type two-band model. While our approach is valid for all type-II superconductors, the
specific calculations have been performed for the YBa2Cu3O7−�. The control of the transmitted frequency by
varying the magnetic field and/or temperature is analyzed. It is suggested that the found anomalously trans-
mitted localized mode can be utilized in the far-infrared monochromatic filters.
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I. INTRODUCTION

Infrared spectroscopy is one of the most important ana-
lytical techniques available to the modern science.1 Due to
intensive development of infrared spectroscopy in the recent
decade, the construction of the different types of far-infrared
monochromatic filters attracts a strong interest. Extraordi-
nary optical transmission through nanostructures constructed
as arrays of holes of a subwavelength diameter in metal films
has been the subject of extensive study since detection of
large enhancements in transmitted intensity was first
reported.2 Several mechanisms responsible for this enhance-
ment have been discussed, including excitation of surface-
plasmon polaritons of the film surfaces.3,4 Such nanostruc-
tures can be used as monochromatic filters. However, it is
impossible to control the transmitted resonant frequencies in
such devices by an external field. In other words, these na-
nomaterials are not tunable. In this paper, we suggest an idea
of a different type of a tunable far-infrared monochromatic
filter consisting of extra vortices placed out of the nodes of
the ideal Abrikosov lattice. These extra vortices are pinned
by crystal defects in a type-II superconductor in strong mag-
netic field. The resonant transmitted frequencies can be con-
trolled by two ways: changing the external magnetic field B
and temperature T because the critical magnetic field Bc2
depends parametrically on temperature.

Photonic crystals �artificial media with a spatially periodi-
cal dielectric function that were first discussed by
Yablonovitch5 and John6� are the subjects of growing interest
due to various modern applications.7,8 This periodicity can be
achieved by embedding a periodic array of constituent ele-
ments �“particles”� with dielectric constant �1 in a back-
ground medium characterized by dielectric constant �2. The
first experimental evidence of a photonic-band structure was
observed with metallic meshes in the terahertz range by Ul-
rich and Tacke.9 Different materials have been used for the
corresponding elements including dielectrics, semiconduc-
tors, and metals.10–15

Previous studies have investigated the photonic band-gap
structure created by the propagation of light through a dielec-

tric medium characterized by some dielectric constant with
periodically located dielectric particles characterized by an-
other dielectric constant.10,11 The optical properties of low-
dimensional metallic structures have also been investigated
recently. For example, the optical transmission through a
nanoslit array structure formed on a metal layer with tapered
film thickness was analyzed in Refs. 12 and 13. The
photonic-band structures of a square lattice array of metal or
semiconductor cylinders, and of an array of metal or semi-
conductor spheres, were computed numerically in Ref. 14.
However, a photonic crystal formed by placing supercon-
ducting �SC� particles in the nodes of the lattice has not been
considered previously. Such a system is interesting, particu-
larly, because of the unique optical properties of supercon-
ductors �see, for example, Refs. 16 and 17�. In recent experi-
ments SC metals �in particular, Nb� have been used as
components in optical transmission nanomaterials. It was
found that dielectric losses are substantially reduced in the
SC metals relative to analogous structures made out of nor-
mal metals. Also, it should be mentioned that band edges
tend to be sharper with the SC metals. The dielectric losses
of such SC nanomaterial18 were found to be reduced by a
factor of 6 upon entering the SC state.

Photonic gaps are formed at frequencies �, at which the
dielectric contrast �2��1���−�2���� is sufficiently large.
Since the quantity �2���� is included into the electromag-
netic wave equation,10,11 only metal-containing photonic
crystals can maintain the necessary dielectric contrast at
small frequencies due to their Drude-type behavior
�metal����−1 /�2.14,15 However, the damping of electromag-
netic waves in metals can suppress many potentially useful
properties of metallic photonic crystals.

A novel type of photonic crystal consisting of supercon-
ducting elements embedded in a dielectric medium was pro-
posed in Ref. 19. Such photonic crystal provides the photo-
nic band gap tuned by an external magnetic field and
temperature. The photonic-band spectrum of the ideal trian-
gular Abrikosov lattices in type-II superconductors studied as
photonic crystals �ideal photonic crystal� has been calculated
in Ref. 20.
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In this paper, we calculate the photonic frequency spec-
trum of a photonic crystal with an extra vortex out of the
node of the Abrikosov lattice �real photonic crystal� in a
type-II superconductor in a magnetic field. The problem is
solved in two steps: �1� we recall the procedure of the solu-
tion to the eigenvalue problem for the calculation of the
photonic-band spectrum of the ideal Abrikosov lattice19–21

and �2� we apply Kohn-Luttinger two-band model22–25 to
find the eigenfrequency spectrum of the Abrikosov lattice
with one extra vortex inside. Based on the results of our
calculations, we are suggesting a different type of a tunable
far-infrared monochromatic filter consisting of extra vortices
placed out of the nodes of the ideal Abrikosov lattice. These
extra vortices are pinned by crystal defects in a type-II su-
perconductor in strong magnetic field. As a result of the
change of an external magnetic field B and temperature T,
the resonant transmitted frequencies can be controlled. This
paper is organized as follows. In Sec. II we analyze the map-
ping of the wave equation for the electromagnetic wave pen-
etrating through the ideal Abrikosov lattice onto the
Schrödinger equation for the wave function of an electron in
the periodic field of a crystal lattice. In Sec. III we perform
the calculations of the eigenfrequency corresponding to the
electromagnetic wave localized due to the extra vortex out of
the nodes of the ideal Abrikosov lattice applying Kohn-
Luttinger two-band model, and frequency for the anomalous
far-infrared monochromatic transmission is given. In Sec. IV
we discuss our results proposing monochromatic filter based
on type-II superconductor in the magnetic field. Conclusions
follow in Sec. V.

II. ABRIKOSOV LATTICE AS AN IDEAL
PHOTONIC CRYSTAL

Let us consider a system of Abrikosov vortices in a
type-II superconductor that are arranged in a triangular lat-
tice. We treat Abrikosov vortices in a superconductor as the
parallel cylinders of the normal-metal phase in the supercon-
ducting medium. The axes of the vortices, which are directed
along the ẑ axis, are perpendicular to the surface of the su-
perconductor. We assume the x̂ and ŷ axes to be parallel to
the two real-space lattice vectors that characterize the two-
dimensional �2D� triangular lattice of Abrikosov vortices in
the film, and the angle between x̂ and ŷ is equal to � /3. The
nodes of the 2D triangular lattice of Abrikosov vortices are
assumed to be situated on the x̂ and ŷ axes.

For simplicity, we consider the superconductor in the
London approximation,17 i.e., assuming that the London pen-
etration depth � of the bulk superconductor is much greater
than the coherence length � :���. Here the London penetra-
tion depth is �= �mec

2 / �4�nee
2��1/2, where ne is the electron

density and me and e are the mass and the charge of the
electron, respectively. The coherence length is defined as �
=c / ��p0

�	�, where �p0=2�c�0 is the plasma frequency and
c is the speed of light. A schematic of Abrikosov lattices in
type-II superconductors is shown in Fig. 1 �the presence of
the pinned extra vortex is discussed in Sec. III�. As it is seen
from Fig. 1 the Abrikosov vortices of radius � arrange them-
selves into a 2D triangular lattice with lattice spacing

a�B ,T�=2��T���Bc2 / ��3B��1/2 �Ref. 20� at the fixed mag-
netic field B and temperature T. Here Bc2 is the critical mag-
netic field for the superconductor. We assume the wave vec-
tor of the incident electromagnetic wave vector ki to be
perpendicular to the direction of the Abrikosov vortices and
the transmitted wave can be detected by using the detector D.

Now let us follow the procedure used in Ref. 19 to obtain
the wave equation for Abrikosov lattice treated as a two-
component photonic crystal. In Ref. 19, a system consisting
of superconducting cylinders in vacuum is studied. In con-
trast, the system under study in this paper consists of the
cylindrical vortices in a superconductor, which is a comple-
mentary case �inverse structure� to what was treated in Ref.
19. For this system of the cylindrical vortices in the super-
conductor, we write the wave equation for the electric field
E�x ,y , t� parallel to the vortices in the form of a 2D partial
differential equation. The corresponding wave equation for
the electric field is

− �2E = −
1

c2	 �
�n�l�	


�r�
�2E

�t2 −
4�

c2

�J�r�
�t

, �1�

where 	 is a dielectric constant of the normal-metal compo-
nent inside the vortices and 
�r� is the Heaviside step func-
tion, which is 
�r�=1 inside of the vortices and otherwise

�r�=0. In Eq. �1� n�l� is a vector of integers that gives the
location of a scatterer l at a�n�l��
�i=1

d ni
�l�ai �ai are real-

space lattice vectors situated in the nodes of the 2D triangu-
lar lattice and d is the dimension of Abrikosov lattice�.

At �Tc−T� /Tc�1 and ����Tc, where Tc is the criti-
cal temperature and  is the superconducting gap, a simple
relation for the current density holds,17

J�r� = �−
c

4��L
2 +

i��

c
�A�r� . �2�

In Eq. �2� � is the conductivity of the normal-metal compo-
nent.

The important property determining the band structure of
the photonic crystal is the dielectric constant. The dielectric
constant, which depends on the frequency inside and outside
of the vortex, is considered in the framework of the two-fluid
model. For a normal-metal phase inside of the vortex, it is

a(B,T)

Vortex

Extra vortex

ki

d

D
ξ

FIG. 1. Anomalous far-infrared monochromatic transmission
through a film of type-II superconductor in the magnetic field par-
allel to the vortices. a�B ,T� is the equilateral triangular Abrikosov
lattice spacing. � is the coherence length and the radius of the vor-
tex. d denotes the length of the film. The shaded extra vortex placed
near the boundary of the film and situated outside of the node of the
lattice denotes the defect of the Abrikosov lattice.
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	in��� and for a superconducting phase outside of the vortex,
it is 	out��� and can be described via a simple Drude model.
Following Ref. 20 the dielectric constant can be written in
the form

	in��� = 	, 	out��� = 	1 −
�p0

2

�2 � . �3�

Equations �3� are obtained in Ref. 20 from a phenomenologi-
cal two-component fluid model26 by applying the following
condition: �pn����. Here �pn is the plasma frequency of
normal conducting electrons and � is the damping parameter
in the normal conducting states.

Let us neglect a damping in the superconductor. After
substituting Eq. �2� into Eq. �1�, considering Eqs. �3� for the
dielectric constant, and seeking a solution in the form with
harmonic time variation of the electric field, i.e., E�r , t�
=E0�r�ei�t, where E0= i�A /c, we finally obtain the follow-
ing equation:

− �2Ez�x,y� =
�2	

c2 �1 −
�p0

2

�2 +
�p0

2

�2 �
�n�l�	


�r��Ez�x,y� ,

�4�

where � is the frequency and �p0 is the plasma frequency.
The summation in Eq. �4� goes over all lattice nodes charac-
terizing the positions of the Abrikosov vortices. Equation �4�
describes Abrikosov lattice as the two-component 2D photo-
nic crystal. The first two terms within the bracket are asso-
ciated with the superconducting medium, while the last term
is related to vortices �normal-metal phase�. Here and below
the system described by Eq. �4� will be defined as an ideal
photonic crystal. The ideal photonic crystal based on the
Abrikosov lattice in type-II superconductor was studied in
Refs. 20, 26, and 27. Equation �4� describing the Abrikosov
lattice was solved in Ref. 20, where the photonic-band fre-
quency spectrum �=��k� of the ideal photonic crystal of the
vortices was calculated.

Equation �4� for the electric field can be mapped onto the
2D Schrödinger equation for an electron with effective mass
m0 in the periodic potential W�r� of the 2D crystal lattice,

�−
�2

2m0
�2 + W�r���0�x,y� = ���0�x,y� . �5�

As a result of mapping in Eq. �5� the eigenfunction
�0�x ,y�=Ez�x ,y�; the periodic potential W�r� is

W�r� = − �2	�p0
2 /�2c2m0� �

�n�l�	


�r� �6�

and the eigenenergy is

�� = �2	��2 − �p0
2 ��2m0c2�−1. �7�

It is important to note that according to Eq. �7� the eigenen-
ergy of such electron �� depends on the frequency �.

Let us expand the periodic wave function �0�r� in terms
of un0�r�, which are the periodic solutions of Eq. �5� corre-
sponding to k=0,

�0�r� = �
nk

cn�k�exp�ikr/��un0�r� , �8�

where cn�k� are the coefficients of the expansion, which can
be determined as a result of substituting Eq. �8� into Eq. �5�,
and n indicates the number of the band.

III. ABRIKOSOV LATTICE WITH AN EXTRA VORTEX AS
A REAL PHOTONIC CRYSTAL

Let us consider an extra Abrikosov vortex pinned by some
defect in the type-II superconducting material as shown in
Fig. 1. This extra vortex contributes to the dielectric contrast
by adding the term 	�p0

2 /c2
��− �r−r0��Ez�x ,y�, where r0
points out the position of the extra vortex, to the right-hand
side of Eq. �4�,

− �2Ez�x,y� =
�2	

c2 �1 −
�p0

2

�2 +
�p0

2

�2 �
�n�l�	


�r�

+
�p0

2

�2 
�� − �r − r0���Ez�x,y� , �9�

Equation �9� describes the type-II superconducting medium
with the extra Abrikosov vortex pinned by a defect in the
superconductor. We define the photonic crystal implying an
extra Abrikosov vortex pinned by a defect as a real photonic
crystal and it is described by Eq. �9�.

Let us mention that the addition of the extra vortex pinned
by some defect leads to a modification of the dielectric con-
stant as it follows from Eq. �9�. However, in our consider-
ation the defect pinning the extra vortex does not take effect
on the dielectric constant of the normal and superconducting
components. Besides, let us emphasize that we consider no
external current in the system.

After mapping Eq. �9� onto the Schrödinger equation for
an electron with the effective electron mass m0, we have

�−
�2

2m0
�2 + W�r� + V�r����x,y� = ����x,y� . �10�

In Eq. �10� ��x ,y�=Ez�x ,y� and the potential V�r� is defined
as

V�r� = − V0
�� − �r − r0��, V0 = �2	�p0
2 /�2m0c2� .

�11�

Equation �10� has the same form as Eq. �6� in Ref. 24. How-
ever, in our case the potential V�r� is defined by Eq. �11� and
corresponds to the potential of the impurity in the
Schrödinger equation for an “electron” in the periodic field
of the crystal lattice and in the presence of the “impurity.”

Since the contribution to the dielectric contrast 	�p0
2 /c2

from an extra Abrikosov vortex has the same order of mag-

nitude as the photonic band gap ̃ of the ideal Abrikosov
lattice calculated in Ref. 20, we expect the eigenfrequency
level corresponding to the extra vortex to be situated inside
the photonic band gap. Our calculations will demonstrate
below that this expectation holds.

Let us apply to Eq. �10� the two-band model,24 where two
different neighboring photonic bands are described by wave
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functions ��r� and ��r� and, therefore, introduce the two-
component spinor as

��r� = ���r�
��r� � . �12�

Note that Eq. �10� describes an electron in the periodic po-
tential of the ideal crystal lattice W�r� and in the potential of
the impurity V�r�. If the solution corresponding to the ab-
sence of impurity V�r�=0 is known, the energy levels of the
electron localized by the impurity can be obtained by replac-
ing Eq. �10� by the Dirac-type equation according to
Luttinger-Kohn model described in Refs. 22–24. This model
implies a Dirac-type equation for the two-component spinor
wave function. According to Ref. 24, the function �n�r� de-
fined as

�n�r� = �
k

cn�k�exp�ikr/�� �13�

satisfied the set of the second-order partial differential equa-
tions. Considering only two neighboring bands correspond-
ing to the wave function ��r� given by Eq. �12� and de-
scribed by wave functions ��r� and ��r� in the limit ���

2

−�
2 � / �2�

2 ��1, this set of equations for �n�r� can be re-
duced to the Dirac-type equations for the two-component
spinor �12�, which has the following form:24

��� − � − V�r����r� + i�s� · ���r� = 0,

��� + � − V�r����r� + i�s� · ���r� = 0. �14�

In the system of Eqs. �14�, as it follows from the mapping of
the wave equation for the electric field in the Abrikosov lat-
tice onto Eq. �10�,

� = �2	�̃2 − �p0
2 �/�2m0c2� �15�

is the forbidden band in the electron spectrum defined by Eq.
�7� and � are the Pauli matrices defined as

�x = 0 1

1 0
�, �y = 0 − i

i 0
� . �16�

In Eqs. �14� s= p / ��3m0� has the dimension of the velocity
and p is given by �pcv���=�k0���, where

k0��� = − i��� uc0
� �r� � uv0�r�d2r�

cv�
�

�

�17�

and � ,� can be x or y. The index c corresponds to the upper
photonic band and the index v corresponds to the lower pho-
tonic band. Let us mention that the two-component model24

described by the Dirac-type Eqs. �14� is necessary only for
the “deep impurities” when the potential of the impurity has
the same order of magnitude as the forbidden band:
�V0 /���1. Note that in the limit, when the potential of the
impurity would be much smaller than the gap, these Dirac-
type equations would be reduced to the effective Schrödinger
equation for the scalar wave function corresponding to the
effective-mass approximation.

We have reduced the problem of the Schrödinger equation
for a particle in the periodic potential W�r� related to the

system of the periodically placed vortices and an “impurity
potential” V�r� related to an extra vortex to a much more
simple equation for the envelope wave functions. These
wave functions imply the existence of two bands and contain
only the potential of an impurity V�r�, while the periodic
potential W�r� enters only in the effective velocity s. Taking
into account the two-band structure, the equation for two-
component spinor wave function ��r� has the form provided
by Eq. �12�. Note that Eq. �10� contains both the periodic
function W�r� corresponding to the ideal lattice and V�r�,
describing the potential of an impurity. Without an impurity
the energy spectrum would be described by two neighboring
bands and the gap between them. Taking into account an
impurity, we have reduced the problem to the approximation
generalizing the effective-mass approximation and implying
the two-band structure. Applying the standard two-band ap-
proach, we have obtained the effective Dirac-type Eqs. �14�
for the envelope spinor wave function, which implies the
periodicity provided by W�r�.

The condition for deep impurities is valid for an extra

Abrikosov vortex only if �up
2 / ̃�

2 �1, which is true.20 Note

that �up�x� and �down�x�=�up�x�− ̃�x� are the up and down
boundaries of the photonic band gap, correspondingly.20

Defining the effective mass of a quasiparticle as

m� = �/s2 = 3m0
2�/p2, �18�

and following the standard procedure of the quantum
electrodynamics28,29 to obtain from the system of Dirac-type
Eqs. �14� the Klein-Gordon-type equation, finally we get:

�− �2s2�2 + 2m�s2V�r����r� = ���
2 − m�

2 s4���r� . �19�

This Klein-Gordon-type equation has the form of the 2D
Schrödinger equation for a particle in the cylindrical poten-
tial well with the eigenvalue

E� = ���
2 − m�

2 s4�/�2m�s2� . �20�

The set of the eigenvalues E�
�nm� and eigenfunctions ��nm�

corresponds to the quantum numbers n=0,1 ,2 , . . . and m
= . . . ,−2 ,−1 ,0 ,1 ,2 , . . . . Our particular interest is only dis-
crete eigenstate corresponding to the localized eigenfunction,
which is characterized by the lowest discrete eigenvalue
E�

�00�. Equation �19� was solved in Ref. 30 and the solution
for the discrete lowest eigenstate is

E�
�00� = −

2�2

m��2exp−
2�2

m��2V0
� �21�

and

��00��r�

= �C1, �r − r0� � � ,

C2 log�2��2m��E�
�00���−1/2�r − r0�−1�, �r − r0� � � ,�

�22�

where the constants C1 and C2 can be obtained from the
condition of the continuity of the function ��00��r� and its
derivative at the point �r−r0�=�.
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In terms of the initial quantities of the Abrikosov lattice,
the eigenfrequency � of the localized photonic state can be
obtained by substituting Eqs. �15�, �18�, and �20� into Eq.
�21�. As the result, we finally obtain

��x� = ��up
4 �x� − A�x��1/4, �23�

where x=B /Bc2 and the function A�x� is given by

A�x� =
16c4k0

2�x�
3	2�2 exp�−

8k0
2�x�c4

3	2�up
2 �x��2�p0

2 � �24�

and k0�x� in Eq. �24� can be obtained from Eq. �17� and is
defined below through the electric field of the lower and
higher photonic bands of the ideal Abrikosov lattice.

The electric field Ez�x ,y� corresponding to this localized
photonic mode can be obtained by substituting the initial
quantities of the Abrikosov lattice from Eqs. �15�, �18�, and
�20� into Eq. �22�, and we get

Ez
�00��r� =� C̃1, �r − r0� � � ,

C̃2B�x� , �r − r0� � � ,
� �25�

where the constants C̃1 and C̃2 can be obtained from the
condition of the continuity of the function Ez

�00��r� and its
derivative at the point �r−r0�=�, and

B�x� = log����r − r0�exp�− 4k0
2�x�c4/�3	2�̃2�x�

− �p0
2 ��2�p0

2 	��−1� . �26�

The function k0�x� is given as �see Eq. �17��

k0��� = − i��� Ezc0
� �r� � Ezv0�r�d2r�

cv�
�

�

, �27�

where Ezc0�r� and Ezv0�r� are defined by the electric field of
the up and down photonic bands of the ideal Abrikosov lat-
tice. The exact value of k0 can be calculated by substituting
the electric field Ezc0�r� and Ezv0�r� from Ref. 20. Applying
the weak-coupling model17 corresponding to the weak di-
electric contrast between the vortices and the superconduc-
tive media �p0

2 /�2���n�l�	
�r�−1��1, we use the approxi-
mate estimation of k0 in our calculations as k0�x�

�2� /a�x�=��−1��3x /�.
Note that according to Eqs. �25� and �26�, the maximum

of the electric field corresponding to this localized mode is
located at the center of the extra Abrikosov vortex pinned by
a defect. This electric field Ez

�00��r� increases as the applied
magnetic field B increases.

IV. RESULTS AND DISCUSSION

The approach we developed in Sec. III applies to the
YBa2Cu3O7−� �YBCO� and we study the dependence of the
photonic-band structure on the magnetic field. For the YBCO
the characteristic critical magnetic field Bc2=5 T at tempera-
ture T=85 K was determined experimentally in Ref. 31. So
we obtained the frequency corresponding to the localized
wave for the YBCO in the magnetic-field range from B
=0.72Bc2=3.6 T up to B=0.85Bc2=4.25 T at T=85 K. Fol-

lowing Ref. 20, in our calculations we use the estimation 	
=10 inside the vortices and for the YBCO �0 /c=77 cm−1.
The dielectric contrast between the normal phase in the core
of the Abrikosov vortex and the superconducting phase given
by Eq. �3� is valid only for the frequencies below �c1 :�
��c1, where �c1=2S / �2���, S=1.76kBTc is the super-
conducting gap, kB is the Boltzmann constant, and Tc is the
critical temperature. For the YBCO we have Tc=90 K and
���c1=6.601 THz. It can be seen from Eqs. �23� and �25�
that there is a photonic state localized on the extra Abrikosov
vortex, since the discrete eigenfrequency corresponds to the
electric field decreasing as a logarithm of the distance from
an extra vortex. This logarithmical behavior of the electric
field follows from the fact that it comes from the solution of
2D Dirac equation. The calculations of the eigenfrequency �
dependence on the ratio B /Bc2, where Bc2 is the critical mag-
netic field, are presented in Fig. 2. According to Fig. 2, our
expectation that the eigenfrequency level � corresponding to
the extra vortex is situated inside the photonic band gap is
true. We calculated the frequency corresponding to the local-
ized mode, which satisfies the condition of the validity of the
dielectric contrast given by Eq. �3�. According to Eqs. �25�
and �26�, the localized field is decreasing proportionally to
log�r−r0�−1 as the distance from an extra vortex increases.
Therefore, in order to detect this localized mode, the length
of the film d should not exceed approximately 10a�B /Bc2�,
which corresponds to d�200 �m for the range of magnetic
fields for the YBCO presented in Fig. 2. For these magnetic
fields a�20 �m. Since the frequency corresponding to the
localized mode is situated inside the photonic band gap, the
extra vortex should be placed near the surface of the film as
shown in Fig. 1. Otherwise, the electromagnetic wave cannot
reach this extra vortex. Besides, we assume that this local-
ized photonic state is situated outside the one-dimensional
band of the surface states of two-dimensional photonic crys-
tal. It should be mentioned that in a case of several extra

FIG. 2. The dependence of the photonic-band structure of the
real Abrikosov lattice on B /Bc2. Solid line represents the eigenfre-
quency � corresponding to the localized mode near the extra vortex
in the real Abrikosov lattice given by Eq. �23�. The dashed and
dotted lines represent, respectively, the top �up and bottom �down

boundaries of the photonic band gap of the ideal Abrikosov lattice
according to Ref. 20.
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vortices separated at the distance greater than the size of one
vortex �it is the coherence length estimated for the YBCO by
��6.5 �m�, the localized mode frequency for both vortices
is also going to be determined by Eq. �23�. The intensity of
the localized mode in the latter case is going to be enhanced
due to the superposition of the modes localized by the dif-
ferent vortices. In the case of far-separated extra vortices, we
have neglected the vortex-vortex interaction. Thus, the exis-
tence of other pinned by crystal defects vortices increases the
intensity of the transmitted mode and improves the possibil-
ity of this signal detection. Note that at the frequencies �
inside the photonic band gap ��down����up�, the transmit-
tance and reflectance of electromagnetic waves would be
close to 0 and 1, correspondingly, everywhere except the
resonant frequency � related to an extra vortex. The calcu-
lation of the transmittance and reflectance of electromagnetic
waves at this resonant frequency � is a very interesting prob-
lem, which will be analyzed elsewhere.

Let us mention that as B /Bc2 increases, � asymptotically
converges to �down up to the crossing point of �up and �down
at B /Bc2�0.85.20 The reason for this convergence of � and
�up with the increment of B /Bc2 is that the symmetric poten-
tial always implies the discrete level corresponding to the
eigenenergy of a particle in a 2D space.32

The extra Abrikosov vortex resulting in the defect in pho-
tonic crystal can be pinned by a crystal lattice defect, for
example, dislocation.33 It is shown that the presence of the
extra vortex qualitatively influences the optical properties of
the type-II superconductor in external magnetic field. Hence,
it would be very useful to analyze the influence of different
dislocation microstructures on the specific optical transmis-
sion in analyzed materials. The principles of a microdesign
of twinning dislocation structures for superconductive prop-
erties improvement of the YBCO in magnetic fields were
analyzed in Ref. 34. Magneto-optics in near fields as well as
a neutron scattering35 seem to be useful for detecting the
extra vortex.

Above we presented the calculations for the YBCO. How-
ever, it should be mentioned that our approach can be applied
to a wide variety of type-II superconducting materials, where

Abrikosov lattice exists in the range of magnetic field Bc1
�B�Bc2. While Fig. 2 implies the plasma frequency �p0
corresponding to YBCO, the behavior shown in Fig. 2 is
general and valid for any type-II superconducting films. Just
in this case, we should replace the YBCO plasma frequency
�p0 by the plasma frequency corresponding to the other
type-II superconductor.

V. CONCLUSIONS

We considered a type-II superconducting medium with an
extra Abrikosov vortex pinned by a defect in a supercon-
ductor. By applying the mapping of the corresponding elec-
tromagnetic wave equation onto the two-band model, the
Dirac-type equation was obtained. By solving this equation,
we theoretically demonstrated the properties of such Abriko-
sov lattices as real photonic crystals. The discrete photonic
eigenfrequency corresponding to the localized photonic
mode is calculated as a function of the ratio B /Bc2, which
parametrically depends on temperature. This photonic fre-
quency increases as the ratio B /Bc2 and temperature T in-
crease. Moreover, since the localized field and the corre-
sponding photonic eigenfrequency depend on the distance
between the nearest Abrikosov vortices a�B ,T�, the resonant
properties of the system can be tuned by controlling the ex-
ternal magnetic field B and temperature T. Based on the re-
sults of our calculations, we can conclude that it is possible
to obtain a different type of a tunable far-infrared monochro-
matic filter consisting of extra vortices placed out of the
nodes of the ideal Abrikosov lattice, which can be considered
as real photonic crystals. These extra vortices are pinned by
crystal defects in a type-II superconductor in strong magnetic
field. As a result of the change of an external magnetic field
B and temperature T, the resonant transmitted frequencies
can be controlled.
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